

Fall 2024
Course Name: Data 6
Instructor: Tsang
Final

Print Your Name: __

Print Your Student ID: ____________________________________

You have 110 minutes. There are 5 questions of varying credit (100 points total).

Question: 1 2 3 4 5 Total

Points: 25 9 48 12 6 100

 For questions with circular bubbles, you may select only one choice.

 For questions with square checkboxes, you may select one or more choices.

Anything you write outside the answer boxes or anything you cross out will not be graded. If
you write multiple answers, your answer is ambiguous, or the bubble/checkbox is not entirely
filled in, we will grade the worst interpretation.

You are disallowed from using the following: ternary operators, lambdas, list comprehensions,
and any libraries/functions that are not built in/on the reference card.

You may only write one statement per line (i.e. you may not use semicolons).

Question 1: Potpourri
Question 1.1 (4 points)
Match each of the following situations with the best sampling method to use in that situation.
Your options are: simple random sampling, stratified random sampling, quota sampling, and
snowball sampling. Each sampling method will be used exactly once.

Situation Best Sampling Method

You have a full, accurate roster of your population.
This roster contains full demographic data as well,
which is what you want to collect information on.

Stratified Random Sampling

You are studying a rare medical disease and want to
contact people who have this disease. However, you
aren’t sure where to find these individuals.

Snowball Sampling

You want to quickly gather some data that is
guaranteed to have individuals from each subgroup
you want to study, but don’t have a full, accurate
roster to choose from.

Quota Sampling

You have a full, accurate roster of your population, but
don’t care as much about collecting information
across certain subgroups in your population.

Simple Random Sampling

Question 1.2 (2 points)
What does the concept of "representation" mean in the context of data?

 The act of directly recording all aspects of reality.

 The process of making something stand for a phenomenon in the world.

 A method to allow arbitrary observations to define phenomena.

 A way to summarize large datasets for ease of use.

Question 1.3 (2 points)
When we say that representation is “selective”, what could it apply to? Select all that apply.

 We are being “selective” to a fault; datasets often become a series of arbitrary
observations when we are too selective.

 We are being “selective” about what data to collect in the first place.
 We are being “selective” about the methods to collect certain types of data
 We are being “selective” about what aspects of the data to showcase.

Question 1.4 (3 points)
Which of the following plots best represents Simpson’s paradox?

PLOT A

PLOT B

PLOT C

 PLOT A

 PLOT B

 PLOT C

Python

Python

Python

Python

Question 1.5 (2 points)
Write a Python expression that evaluates to 0 if n is even, and 1 if n is odd. You may only use
arithmetic operators (+, -, *, /, //, %), n, and integers.

n % 2

Question 1.6 (2 points)
Write a Python expression that evaluates to 1 if n is even, and 0 if n is odd. You may only use
arithmetic operators (+, -, *, /, //, %), n, and integers.

1 - n % 2

Question 1.7 (2 points)
Write a Python expression that evaluates to the last two digits of n. For example, if n is 100, this
expression should evaluate to 0. If n is 12189, the expression should evaluate to 89. You may
only use arithmetic operators (+, -, *, /, //, %), n, and integers.

n % 100

Question 1.8 (2 points)
Write a Python expression that removes the last two digits of n. For example, if n is 100, this
expression should evaluate to 1. If n is 12189, the expression should evaluate to 121. You may
only use arithmetic operators (+, -, *, /, //, %), n, and integers.

n // 100

Question 1.9 (2 points)
Is this an associative or causal relationship: As ice cream sales increase, we also observe shark
attacks increase as well.

 Associative

 Causal

Question 1.10 (2 points)
With the relationship above, it is possible that summer months impact both ice cream sales and
shark attacks. This is considered a…

Options: Confounding variable, theory, concept, causal hypothesis, associative hypothesis,
exploratory research question, unit of analysis, scientific method, aggregation, disaggregation,
internal validity, external validity, generalizability, categorical variable, numerical variable

Question 1.11 (2 points)

True or False: It is easier to go from aggregated data to disaggregated data than from
disaggregated data to aggregated data.

 True

 False

Question 2: Potpourri

Suppose we have the following Python program:

Assume we run the code, and this is the state of the environment diagram at the end of the
program.

Question 2.1 (2 points)
What should go in BLANK ONE?

 -2

 -1

 0

 1

 2

 3
Question 2.2 (3 points)
What should go in BLANK TWO?

 -2

 -1

 0

 1

 2

 3
Question 2.3 (4 points)
What is printed out?

Question 3: RPS!

Let’s simulate a game of rock, paper, scissors! Here’s how the game works:

There are two players: Player 1 (P1) and Player 2 (P2).

Each game, a player will select one choice out of rock (“R”), paper (“P”), and scissors (“S”).
Rock beats scissors, scissors beats paper, and paper beats rock.

If both players make the same selection, then the game ends in a tie.

Question 3.1 (6 points) Start by implementing winner,which takes in the choice by player 1
and player 2, and returns the following:

● If player 1 wins, return 1
● If player 2 wins, return 2
● If the game ends in a tie, return 0.

Python

def winner(p1, p2):
 """
 Returns the winner of a game.
 "P" represents Paper
 "S" represents Scissors
 "R" represents Rock
 Inputs: Two Strings
 >>> winner("P", "S")
 2
 >>> winner("S", "P")
 1
 >>> winner("R", "P")
 2
 >>> winner("R", "S")
 1
 >>> winner("R", "R")
 0
 """
 #Write your code here
 if p1 == "P" and p2 == "S":
 return 2
 elif p1 == "S" and p2 == "R":
 return 2
 elif p1 == "R" and p2 == "P":
 return 2
 elif p1 == p2:
 return 0
 else:
 return 1

Python

Question 3.2 (2 points) Next, let’s develop a strategy for this game. All strategies will contain a
numpy array of past opponent_choices, with the most recent decisions coming last. Let’s
continue by implementing simple_strategy, which always chooses choice, regardless of
opponent actions.

def simple_strategy(choice, opponent_choices):
 """
 Returns choice, regardless of the opponent's choice.
 Inputs:
 choice: a String
 opponent_choices: a NumPy array
 >>> simple_strategy("R", make_array())
 "R"
 >>> simple_strategy("R", make_array("R", "R"))
 "R"
 >>> simple_strategy("P", make_array("S", "P"))
 "P"
 """
 return choice

Python

Question 3.3 (8 points) This simple strategy is probably too simple. Fill in the implementation
of smarter_strategy, which follows these guidelines:

● If there are less than 2 opponent_choices that we know of, default to the
simple_strategy.

● Otherwise, return the move that would beat the most recent opponent move (e.g. if the
most recent opponent move is “R”, we should choose “P”, with one exception:

● If the most recent 2 opponent choices are the same, then repeat the opponent choice.
For example, if the most recent opponent choices are “R” and “R”, we should choose
“R”.

def smarter_strategy(choice, opponent_choices):
 """
 See problem description for more details.
 >>> smarter_strategy("R", make_array())
 "R"
 >>> smarter_strategy("R", make_array("R", "R"))
 "R"
 >>> smarter_strategy("P", make_array("S", "P"))
 "S" #Since the recent opponent choice is "P"
 """
 if len(opponent_choices) < 2:

 return simple_strategy(choice) #DO NOT JUST WRITE choice

 elif opponent_choices.item(-1) == opponent_choices.item(-2):

 return opponent_choices.item(-1)

else:

 return {"R": "P", "P":"S", "S":"R"}[opponent_choices[-1]]

Question 3.4 (12 points) Now that we have a strategy, let’s run a simulation! Implement
simulation, which takes in P1’s strategy, as well as the number of simulations to run (N).
For each game that is played, we add a row to a Table containing P1’s choice, P2’s choice, and
the result of the game (1 if P1 wins, 2 if P2 wins, and 0 otherwise).

For simulation, assume that P2’s strategy is to pick a random option from the three
options of [“R”, “P”, “S”]. In order to track the simulation, it will also take in a seed in order for
the outcomes to be deterministic (see next page for code).

Python

def simulation(p1_strategy, choice, n, seed):
 """
 Runs n games of Rock, Paper, Scissors.
 Adds every game result to a Table that is returned.
 Inputs:
 p1_strategy: a strategy function for P1
 choice: P1's default choice
 n: number of simulations to run
 seed: random seed for reproducibility
 """
 np.random.seed(seed) #Set the seed
 outcomes = Table.with_columns("P1_choice", make_array(),
 "P2_choice", make_array(),
 "Result", make_array())
 opponent_choices = make_array()

 for i in np.arange(n):
 # P2 chooses randomly

 p2_choice = np.random.choice(["R", "P", "S"])
 # P1 chooses based on the strategy

 p1_choice = p1_strategy(choice, opponent_choices)
 # Determine the result

 game_result = winner(p1_choice, p2_choice)
 # Update the table

 outcomes = outcomes.with_row([p1_choice, p2_choice,
game_result])

 # Update opponent_choices

 opponent_choices = np.append(opponent_choices, p2_choice)

 return outcomes

Question 3.5 (2 points) True or False: Calling simulation twice with the same parameters is
guaranteed to result in the same exact table.

 True

 False

Suppose we run 1000 simulations, and get the following results in tbl:

tbl
P1_choice P2_choice Result

“R” “S” 1

“R” “R” 0

“P” “S” 2

“R” “P” 2

“S” “P” 1

“P” “P” 0

“P” “S” 2

. . . (993 rows omitted)

Question 3.6 (3 points) Match each variable to its corresponding variable type. You may pick
between: ordinal, nominal, discrete, and continuous.

Variable Variable Type

P1_choice Nominal

P2_choice Nominal

Result Nominal

Python

Python

Question 3.7 (3 points) Write an expression that creates a pivot table where the columns are
the unique choices from P1, and the rows comprise the unique choices from P2. The value at
that row and column is the number of times that particular combination of choices have been
made. Assume that this table is called tbl.

tbl.pivot("P1_choice", "P2_choice")

Question 3.8 (4 points) Write an expression that creates a horizontal bar chart, where there is
one bar for each type of choice (“R”, “P”, “S”), and the length of the bar represents the
number of times that P2 made that choice. (Hint: just using barh will create a bar for every row,
which likely isn’t what you want).

tbl.group("P2_choice").barh("P2_choice")

Question 3.9 (4 points) Briefly explain why a line plot or scatter plot is an inappropriate
visualization to use for tbl.

Question 3.10 (4 points) Let’s add a new column to tbl called Score, which calculates the
running score of Player 1 as the simulation runs. If Player 1 wins, we add 1 to the score. If Player
1 loses, we subtract 1 from the score. In other words, the updated tbl should look like this:

Python

Python

P1_choice P2_choice Result Score

“R” “S” 1 1

“R” “R” 0 1

“P” “S” 2 0

“R” “P” 2 -1

“S” “P” 1 0

“P” “P” 0 0

“P” “S” 2 -1

. . . (993 rows omitted)

You may use the following function, convert, which turns the Result into Player 1’s score
change.

def convert(result):
 if result == 1:
 return 1
 elif result == 2:
 return -1
 else:
 return 0

Write an expression that adds this new Score column to tbl.

Python

score_changes = tbl.apply(convert, "Result")

running_score = np.cumsum(score_changes)

tbl.with_column("Score", running_score)

Question 4: Drawing Triangles!
Question 4.1 (6 points) We’re back to drawing triangles! Fill in the implementation of
draw_triangle, which prints out a left-aligned triangle with height h. See the doctests for
details.

def draw_triangle(h):
 """Prints a triangle with height h.
 h is guaranteed to be greater than or equal to 1.
 >>> draw_triangle(1)
 *
 >>> draw_triangle(2)
 *
 **
 >>> draw_triangle(5)
 *
 **

 """
 for layer in np.arange(1, h + 1):
 line = ""
 for i in np.arange(layer):
 line = line + "*"
 print(line)

Python

Question 4.2 (6 points) Let’s move onto drawing a cooler triangle. We’re back to drawing
triangles! Fill in the implementation of draw_cooler_triangle, which prints out a
center-aligned triangle with height h.Since this triangle is center aligned, each layer of the
triangle increases by 2 instead of 2. See the doctests for details.

def draw_cooler_triangle(h):
 """Prints a cooler triangle with height h.
 h is guaranteed to be greater than or equal to 1.
 >>> draw_cooler_triangle(1)
 *
 >>> draw_cooler_triangle(2)
 *

 >>> draw_cooler_triangle(3)
 *

 """
 for layer in np.arange(1, h + 1):
 line = ""
 for i in np.arange(1, h + layer):
 if i <= h - layer:
 line = line + " "
 else:
 line = line + "*"
 print(line)

Python

Python

Python

Question 5: API Requests
Suppose we receive the following response from the OpenAI API after prompting it.

response =

{
 "id": "chatcmpl-123",
 "object": "chat.completion",
 "created": 1677652288,
 "model": "gpt-4o-mini",
 "system_fingerprint": "fp_44709d6fcb",
 "choices": [{
 "index": 0,
 "message": {
 "role": "assistant",
 "content": "\n\nHello there, how may I assist you today?",
 },
 "logprobs": null,
 "finish_reason": "stop"
 }],
 ...
}

Question 5.1 (3 points) Write a Python expression that evaluates to the model we are using (in
this case, “gpt-4o-mini”) using response (which is a dictionary).

response["model"]

Question 5.2 (3 points) Write a Python expression that evaluates to the value associated with
finish_reason (in this case, “stop”) using response (which is a dictionary).

response["choices"][0]["finish_reason"]

	Question 1: Potpourri
	
	Question 2: Potpourri
	
	Question 3: RPS!
	Question 4: Drawing Triangles!
	
	Question 5: API Requests

